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Understanding liquid structures 

R L McGreevy 
Clarendon Laboraloiy, Park Road, Oxford OX1 3PU, UK 

ReceNed 7 June 1991 

AbstracL It has often been said that ‘the s t n ~ c l u ~  factors of all liquids (and glasses) look 
the same.. nose  working in the field know that there is a cemin truth lo this. as many 
of lhe basic features are determined by hard sphere packing. However lhey ah0 know 
that there are differences, sometimes subtle. which depend on delails of the bonding and 
1-1 structural arrangement. ?he initial requirement for undemanding these details is 
an accurate experimental measurement. This is not a trivial task but even when it has 
been done the interpretation of the structure faclor(s) or radial dislribulion function(s) 
often only uses gross features such as peak positions and cwrdination numbers. Tlis 
approach makes poor Use of the data oblaked and it can be misleading. RMC is a method 
of svucturaI modelling which is based on the aperimental data and so makes full use 
of all the available information. The ability lo create a threedimensional model leads 
U) a grealer understanding of the relationship beween slrucIure and structure lactor, 
independent of their relationship to the inleratomic potential. 

1. Introduction 

The structure factor S ( Q )  and radial distribution function g(r) for molten lithium 
are shown in figure 1. Alkali metals may be regarded as archetypal ‘simple liquids’. 
Apart from a scaling factor their structure factors, in common with thme of Ar, Kr, 
Xe and some transition metals (e.g. AI, Cu), are almost identical; they have the 
form of a damped oscillatory function of dominantly a single period. The g ( r ) s  are 
correspondingly similar. Measurement of such a structure factor to a high degree of 
accuracy (e.g. systematic and statistical errors less than 1%) is difficult even in these 
days of high intensity x-ray and neutron sources. Given this difficulty it is somewhat 
surprising that, when such results are obtained, very little use is made of them. A 
conventional approach may be summarized as follows. 

(a) Transform S(Q) to g(r) (often introducing errors due to truncation). 
(b) Note the position of the first and (sometimes) second peak in g(r). 
(c) Calculate the coordination number, i.e. the area under the first peak (using 

one of at least four different prescriptions, each of which produces a slightly different 
result). 

Thus the wealth of information inherent in the structure factor is condensed 
into two or three numbers which represent some ‘average’ properties. From these 
averages one then attempts to visualize the local structure, for instance by comparing 
the values to those for the corresponding crystal structure. In the case of Li the 
coordination number is c 13 and the first peak in g(r) encompasses both first- and 
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Figure 1. 
lithium. 

(a) Structure faclor and (6) radial dislribution function g(r) for molten 

second-neighbour distances in the crystal. Given that the crystal structure is BCC, with 
eight nearest and six second-nearest neighbours, then one immediately considers that 
the average local environment in the liquid is roughly the same as that in the crystal. 

While thumay be correct the structure, on the basis of the information used, could 
for instance be icosahedral, hexagonal close-packed, or a mixture of all three. The 
problem is that liquids do not have a well defined local structure and the coordination 
number is only an average. g(  r )  does not decrease to zero after the first peak, so 
coordination shells are arbitrarily defined. Even if one takes the first minimum in 
g ( r )  to define a first coordination shell limit all Li atoms will not have 13 neighbours 
withm this distance; the distribution will probably range from 6 to 20. In addition a 
liquid can have up to 30% excess free volume in comparison with the crystal, which 
may be distributed in the form of ‘vacancies’, so the average coordination number 
may be lower than that expected for a certain crystalline symmetry. 

The ‘average’ analysis also disregards information that may be obvious from con- 
sideration of S(Q), but is not readily apparent in g(r). In figure 2 we show g(r) 
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Fisure 2. (a) Three radial distribution [unctions with the same Erst peak p i l i o n  and 
average awrdination number and (b)  the corresponding svucture faclors. Bottom - 
e( r) and S( Q) for expanded (low density) Cs. lbp - g( r )  and S( Q) obtained from 
a model of high density Cs with atoms removed at random to give the same density as 
expanded Cs. Centre - as top, but with pain of neighbouring a t o m  removed at random. 

and S ( Q )  for expanded (high temperature) Cs (Winter et a1 1987,1988). The first 
minimum in g ( r )  is poorly defined, but in fact occurs at a ve'y similar position to 
that in low temperature Cs, as does the first peak The coordination number is NN 6.5. 
We also show g ( r )  and S(Q) calculated from two models of low temperature Cs. 
However, in the first atoms have been removed at random to decrease the average 
coordination number from NN 13 to NN 6.5, and in the second neighbouring pairs of 
atoms have been removed. We then have three g( r)s all of which have the same 
'average' properties, hut the structure factors are significantly different. When single 
atoms have been removed the free volume is uniformly distributed so there is no rise 
at small Q, but when pairs of atoms are removed the correspondingly larger local 
density deficit gives some low Q rise. In the real system the Q + 0 value is very 
high, indicating large variations in the local density and hence the local structure. 

In cases where the first minimum in g ( r )  is small or zero (though care must 
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be taken to ensure that this is not due to truncation errors in the transform from 
S(Q)), that is molecular or ‘quasi-molecular’ liquids, the analysis discussed above 
is simply transferred to the second and thud peaks. For highly structured, non- 
spherical molecules the inter-molecular part of g(r) or S(Q)  is often treated as if 
it were a simple liquid, even though it is understood that orientational correlations 
between molecules are probably significant. An extreme case of this is the treatment 
of network glasses as an arrangement of randomly packed units; e.g SiO, units in 
vitreous SiO,, where each Si is fourfold coordinated to 0. However, all oxygens are 
‘shared’ between two units and the packing is far from random; it is the comeclivily 
of the network produced that is of greatest importance. 

While the analysis described above is perhaps exaggerated the general approach 
is not uncommon. However, it may be misleading, as‘has been indicated. In order to 
understand the liquid structure we must consider the information on the average short 
range order in the context of other information, for instance the macroscopic density 
and htermediate range density fluctuations (that is the low Q behaviour of S( Q)). 
The only realistic way to do this is through some form of large scale modelling. 

2. Simulation 

Many liquid structures are modelled using Monte Carlo (MC) or molecular dynamics 
(MD) simulations. In these cases the results are, of course, totally dependent upon 
the interatomic potential chosen as input. The ‘correctness’ of this potential is often 
assessed by comparison of the predicted g(r) with that determined by experiment. 
Where agreement is good then one may have confidence in the simulated structure 
and it can be analysed and examined in detail. Alternatively if the comparison is 
poor it may be assumed that the potential is inadequate. This is not always justifiable 
either from the point of view of the experimcnt or of the simulation, for two main 
reasons. 

(a) Experimental data are measured in Q space. Separation of total structure 
factors to give partial structure factors for a multicomponent system and/or transfor- 
mation to I‘ space lcads to a redistribution, and sometimes a significant magnification, 
of errors. Since experimental errors are almost never quoted in I‘ space, being largely 
unknown, a quunfifafive comparison with simulation cannot really be made. If possible 
comparison should be made with total structure factors in Q space, where the size 
and distribution of errors are more likely to be known. If the simulation size is small 
then the problem of truncation in the transform from r to Q space can be overcome 
(see Appendix 1). 

(b) I‘ space comparison emphasizes the short range structure. Excellent agreement 
is possible for g(r) at small T while distinct features at low Q in S(Q), indicating 
particular intermediate range ordering, can be grossly wrong or even missing. Any 
detailed analysis of intermediate range ordering based on comparison of g( r) only is 
therefore unjustified. In some cases even models with significantly wrong macroscopic 
densities can agree well at g(r) level. 

If comparison of simulation and experiment is made at S(Q) level and the 
comparison is good then the simulated structure can be examined in detail. If the 
comparison is only qualitative, or not even that, then it is difficult to know how to alter 
the input potential to improve the level of agreement. Such an iterative approach has 
been used occasionally but is computationally very expensive (e.g. Dzugutov 1989). 
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3. RMC modelling 

The RMc technique has been described in detail by McGreevy el QI (1990). The 
algorithm is similar to that for Metropolis Monte Carlo simulation, except that instead 
of minimizing the potential energy of the system, based on an input interatomic 
potential, one minimizes the difference between the structure factor@) calculated 
from the model and those measured experimentally. It has been shown by Howe 
and McGreevy (1991b) that, in the case of a system described by painvise additive 
potentials, this method produces correct threebody correlations even though the 
‘input’ information (that is the structure factor) is only an orientational average. 
Where the potential contains significant many-body terms the imposition of suitable 
constraints can enable the assessment of different structural possibilities. 

RMc has many advantages for structural modelling. 

(a) All the available data are used in a quantitative and self- consistent manner. 
(b) No interatomic potential is required. This is an obvious advantage for the 

majority of liquids where the available potentials do not quantitatively reproduce the 
diffraction data. 

(c) Large models can be used so structure factors can be modelled directly. 
(d) Data setF from different experimental techniques can be readily combined 

(Keen and McGreevy 1990, Gurman and McGreevy 1990) and constraints determined 
by other methods or ‘chemical knowledge’ can be easily applied. 

(e) Information on partial structure factors or partial radial distribution functions 
can be obtained from fewer total structure factors than are required for a conventional 
solution (see e.g. Howe and McGreevy 1991). While such partials are obviously not 
unique it has been shown (Pusztai and McGreevy, private communication) that in 
some cases modelling of a single accurate structure factor for e.g. a two-component 
system can produce more accurate partials than conventional solution from three less 
accurate structure factors obtained using isotopic substitution 

4. Analysis of a three-dimensional disordered structure 

Once a three-dimensional model of a liquid structure has been obtained it is not clear 
how that structure should be characterized. Even the three-body correlation function 
g(3)(~12, rI3, cos is too complex to visualize, and for all but the largest models 
would in any case be statistically inaccurate. Such information must be represented 
in a more compact form. 

4.1. Neighbour dislribution 

While the dangers of interpreting the average coordination number have been stressed 
above it is nevertheless useful to define a local coordination shell, using some arbitraly 
limit such as the first minimum in g(r), and to examine the distribution of coordina- 
tion numbers for individual ions, C( n). The precise definition of coordination shell 
then becomes less important and of course the distribution can be examined as a 
function of the size of the coordination shell. 
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4.2. Bond angle distributions 

Using some definition of coordination shell, the vectors joining any two atoms can be 
called ‘bonds’ on the understanding that this does not imply any chemical bonding. 
The distribution of angle cosines between pairs of bonds with a common central atom, 
B(cos e), is illustrative of the dominant local ‘symmetry‘ (see Wicks and McGreevy 
1991). 

4.3. Invariants of spherical harmonics 

A useful technique based on spherical harmonic invariants, Qt (Steinhardt et a1 1983) 
has been developed (see e.g. Baranyai et al 1987, McGreevy and Pusztai 1990). These 
contain essentially the same information as the bond angle distributions but in a more 
compact form. Comparison of the Q, distribution with those calculated for clusters of 
known structural symmetry, but with vatying degrees of disorder, is a simple method 
of assessing possible local ordering. 

4.4. Bond cenlre distribution 

One aspect of liquid structure that has received considerable attention in the last 
few years has been intermediate range order. The existence of such order is usually 
characterized by a peak in the structure factor below the ‘main’ peak, typically at 
Q 1 A-’. RMC modelling has shown clearly that these peaks are often due to 
density fluctuations of a particular component of thc liquid and this can be seen 
quite clearly by direct obsenation of the three-dimensional structure. These density 
fluctuations may be due to a tendency of the atoms to cluster. One way of displaying 
this tendency is to look at the distributions of bonds (as defined above), since where 
atoms cluster the bonds cluster more strongly. By calculating the structure factor or 
radial distribution function corresponding to the points at the bond centres the low Q 
peak can be magnified and the clustering tendency demonstrated clearly (see figure 
3 and section 5.1). A bond centre is here defined as the point midway between an 
atom and one of its neighbours in the first coordination shell, this being defined by 
the first minimum in g( T ) .  

5. Examples 

The structures of many different types of liquids have been studied by RMC modelling, 
including monatomic liquids (Howe et a1 1991, McGreevy and Pusztai 1988), liquid 
metal alloys, molten salts and liquid semiconductors (Howe and McGreevy 1991a, 
McGreevy and Pusztai 1990, Howe 1989), molecular liquids (Howe 1990a) and ionic 
solutions (Howe 1990b). Here we will only give a few examples to illustrate how 
modelling has led to a greater understanding of liquid structure, which could not be 
obtained from average properties of radial distribution functions. 

5.2. Alkali-&amition metal alloys 

Van der Marel et a1 (1982) proposed that the resistivity of certain alkalidn and 
alkali-Pb alloys which, as a function of composition, show distinct maxima at the 
equiatomic composition, could be understood in terms of the formation of ‘Zintl’ 
ions. The basic idea is that certain complex ions may be stable in alloys when they 
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Figum 3. Bond Centre slruclure factor for PbPb bonds in molkn Wb. Bond centres are 
defined as the poinls midway behveen an alom and ils neighbours in the first cmrdinalion 
shell. 

are isoelectronic with known stable molecular or coplently bonded elements. For 
instance in K-Pb the stable species would be tetrahedral Pbj-, which is isoelectronic 
with the stable P, molecule. The four electrons required to form this complex ion 
are donated at the equiatomic composition by four K atoms. 

It has been proposed that the form of the structure factor of molten &,5Pb,,5 (see 
Reijers er a1 1989 and references therein), in particular the existence of a large 'first 
sharp diffraction peak' (FSDP) at Q = 1.0 A-' is evidence that this liquid is in fact a 
molten salt of K+ cations and well defined Pb:- anions. RMC modelling of a single 
total structure factor (for a twocomponent system) was able to show remarkably that 
the FSDP was indeed due to Pb-Pb clustering. This cannot be determined simply 
by 'looking' at the data. In figure 3 we show the structure factor corresponding to 
P b P b  bond centres (see section 4.4). This has a very sharp peak at Q % 1 A-', 
significantly stronger than that in the normal atom-atom structure factor, showing 
quite clearly that this feature is due to a tendency of Pb atoms to cluster. The 
experimental structure factor was shown to be consistent with Zintl ion 'contents' of 
between 25% and 100% , but the lower contents showed a strong correlation of the 
degree of clustering with resistivity as a function of composition. The properties of 
these materials can therefore be explained in terms of a 'tendency' to form Zintl 
ions, rather than actual formation of a large proportion of well defined complexes. 
In other words the many-body terms in the potential that would stabilize the ions are 
not particularly strong. 

More recent work on NaTI (McGreevy, private communication) has shown, again 
for a single total structure factor, that the small FSDP is in this case due to TI-TI 
correlations. Here the Z i t 1  ion would be the infinite diamond lattice, TI- being 
isoelectronic with Si, and indeed the TI- ions are found to form clusters with the 
appropriate bond angles. It would seem, therefore, that the Zintl ion picture, while 
not being correct in an absolute sense, does contain the right 'ingredients'. 

- 
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5.2 MoNen saNs 

Conventional analysis of isotopic substitution neutron diffraction data on molten CuCl 
(Esenberg et a1 1982) suggested that the Cu-Cu distribution was extremely disor- 
dered. Numerous simulations failed to reproduce such behaviour. RMC modelling 
(McGreevy and Pusztai 1990) showed that the experimental data were in fact wnsis- 
tent with a more ordered cation distribution, similar to that found in molten LiCI. 
However, while in LiCl cations are dominantly octahedrally coordinated, as they are 
in the LiCl crystal structure (rocksalt), in CuCl cations are tetrahedrally coordinated, 
as they are in CuCl crystal structure (zinc blende). Both liquids therefore have 
structures which are disordered forms of their corresponding crystal structures. 

Molten ZnCI,, MgCI, and nickel halides have average cation-anion coordinations 
close to four and cationation partial structure factors with a well defined BDP. This 
has been interpreted as indicating well defined tetrahedral coordination for all these 
melts (Biggin and Enderby 1981, Biggin et ai 1984, Newport er al 1985, Wood and 
Howe 1988, Wood er al 1988), despite the fact that the physical propcrtics of ZnCI, 
are considerably different from the others. RMC modelling has shown that ZnCI, is 
indeed tetrahedrally coordinated, explaining its high viscosity and glass forming ability, 
and in agreement with the various crystalline polymorphs. However, the other melts 
are dominantly octahedrally coordinated (in t e r m  of angular correlations), as they 
are in their corresponding crystal structure (CdCI, type). Again the RMC structural 
models are found to be consistent with other physical &formation on which they are 
not based. 

5.3. Molten germanium 

Ge is a liquid whose structure is extremely difficult to interpret by conventional means 
because the radial distribution function (see figure 4) has a single sharp first peak, 
with subsequently no well defined minimum or indeed any other well defined feature 
(Salmon 1988). The definition of a coordination shell is therefore rather arbitrary 
but would give a value for the average coordination of 4-8. RMC modelling (Howe er 
al 1991) shows immediately that the dominant local coordination is tetrahedral, as in 
crystalline or amorphous Ge, but with considerable penetration of ‘second’ neighbours 
into the first coordination shell. If a first shell is defined by symmetrizing the first 
peak in g ( T )  then it is possible to produce a structure, that is in agreement with the 
diffraction data, with 96% fourfold coordination. Metallic conductivity in molten Ge 
cannot therefore be attributed to octahedral coordination. 

= 

5.4. Expanded caesium 

Nield et al (1991) have shown that the changcs in the structure factor and radial dis- 
tribution function of CS along the liquid-vapour coexistence curve (Witer et ai 1987, 
1988), despite a linear decrease in the average coordination number with density, 
are in fact due to an increase in the range of coordination numbers as the critical 
point is approached, i.e. stronger fluctuations. The structures obtained suggest that 
the metal-non-metal transition, which is approximately coincident with the critical 
point, is due to a percolation transition in the network of ‘metallic’ bonds. By a 
simple model, based on the bond network, they have reproduced the experimcntally 
determined resistivity as a function of density remarkably well. 
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FlgYn A Radial distribution function for molten germanium. 

6. Conclusions 

It is not the aim of this paper to suggest that RMC modelling is the only way of 
understanding liquid structure. However, it is the intention to suggest that such 
complex structures cannot be understood without some form of modelling or simu- 
lation, and that such models should be in good agreement with the measured data 
(i.e. structure factors). No model will, of course, ever be completely unique, but the 
natural self-consistency of modelling methods does overcome many of the possibly 
misleading aspects of conventional interpretations in terms of ‘average’ quantities. 
The production of a three-dimensional model leads to a greater understanding of the 
liquid structure and hence of many other properties which depend on that structure. 
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Appendix 1. Comparison of simulated and experimental structure factors 

If the simulation sue is small then the radial distribution function g s ( r )  will still 
have significant oscillations at r = L / 2 ,  where L is the length of the simulation cell 
(here assumed to be cubic). There will then be truncation errors in the transform 
to Ss(Q). Since the experimental data S,(Q) are measured in Q space they do 
not contain such errors, so they cannot be compared to the simulated Ss( 9). This 
could be calculated directly without truncation errors at Q values determined by the 
symmetry of the simulation cell, i.e. Q = (2?r /L)(n , ,n2 ,n3) ,  but the net of points 
is sparse at low Q. 
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The truncation problem can be Overcome in the following manner. The simulated 
radial distribution function g & ( r )  is a section of the complete radial distribution 
function gs(F) ,  multiplied by a step function 

f ( ~ )  = 1 r <  L / 2  

f ( r )  = O  r >  L/2  

S&(Q) is therefore the convolution of the ‘true’ structure factor Ss(Q) and the 
transform of f (  r )  

sin(QLl2) 
f ( Q ) =  

If the experimental structure factor SE(Q) is similarly convoluted with f(Q) 

then it can be compared directly to S:(Q). While the shape of the structure factor 
has been modified by the convolution all the intensiv information is maintained so a 
quantitative comparison of experiment and simulation can be made. If SE(?-) is flat 
already at r = L/2  then the convolution will not alter S,(Q). 

This method is particularly useful for crystals where there is long range order and 
hence no simulation can be large enough that g s ( r  - L/2) -+ 1. An example of an 
unconvoluted structure factor and the corresponding convoluted structure factor and 
RMC fit is shown in figure 5. 

Appendix 2. Assessment of the quality of experimental data 

If one takes a structure factor or radial distribution function from the literature then, 
if no realistic assessment of errors is given, it is necessary to assume that the data 
are ‘correct’. If a simulation or model is compared to the data and there is some 
disagreement then this implies that the potential used in the simulation is wrong. One 
may then go to a great deal of effort to improve the potential or model to obtain 
better agreement with the data. If the data contain significant errors then obviously 
this effort is wasted, so some method of assessing the data U priori is required. 

Experimental diffraction data contain statistical and systematic errors. The Q 
spacing of data points should be small compared to any feature in S(Q), so high 
frequency statistical noise is effectively removed by transforming to g ( r ) .  Systematic 
errors can arise from sources such as incorrect subtraction of sample container or 
background and incorrect treatment of absorption or inelastic scattering. These errors 
are (normally) of low frequency in Q compared to oscillations in the structure factor 
and so contribute significantly at low T in g ( r ) .  Since g(r) should be zero below 
some distance T~ determined by the closest approach of two atoms, the deviation 



Understanding liquid structures 

2.5 

2.0- 

15- 

10 - 

0.5- 

10 - 

0.75- 

0.5- 

025- 

00 - 

-0.25- 

(b )  

I 

- O S 5 w T - v <  

- 
Figure 5. (a) €xperimPntaI Structure factor &(Q)  for AgBr at 684K (a) S,(Q) 
eonvoluted with f(Q) (see Appendix 1) in comparison with the RMc fit. 

from zero can be used to assess the level of systematic errors However, truncation 
errors caused by a limited Q range can also contribute to g(r  < r0) so they must be 
distinguished. 

The method of assessment is therefore as follows. 

(1) 'Ransform S,(Q) directly to g E ( r ) .  Note that it is not uncommon for the 
published S,(Q) and g E ( r )  not to be related by a direct transform since smoothing 
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and iterative transform techniques are often used. 
(2) If there are significant oscillations about zero at r < ro they may be due 

to truncation. This can be checked since the period in r should be approximately 
27r/QmaX. As experiment and simulation should be compared in Q space (see 
Appendix 1) truncation ermrs are not a problem. 3x0 examples of truncation error 
are shown in figure 6. 

(3) Significant systemaric errors usually lead to g(r < r,,) being either dominantly 
positive or negative and increasing (or decreasing) significantly as r -, 0. Note that 
there may be superimposed truncation oscillations. The error level can be estimated 
hy setting g(r) to zero for r < ro and then back-transforming to Q space. The back- 
transformed structure factor is then compared with the original. Since any model will 
automaficaliy have g(r < ro) = 0 this comparison will give a first estimate of the 
besr level of agreement that can be obtained with the experimental data. However 
back transformation is nor a method of removing errors from data. Systematic ermm 
in S(Q) produce errom at all r in g ( r ) ;  they can just be ‘seen’ most easily for 
r < r0. .An example of a structure factor with significant systematic error and the 
corresponding g( r)  are shown in figure 7. 

(4) If the direct transform of the experimental S(Q) leads to a g(r) that is 
very flat below ro then either the data are extremely good, or the structure factor is 
actually the back-transform of a modified g( r). There is no way of knowing which. 

(5) Many neutron diffraction measurements are performed with containers made 
of materials such as vanadium, or T i i r  ‘zero’ alloy, which have small coherent scatter- 
ing and hence an almost flat dieaction pattem. Small errors in container subtraction 
are therefore relatively unimportant However, there are also many experiments which 
use silica containers. Since silica is a glass its structure factor is often qualitatively 
comparable with that of the material it contains. Errors in container subtraction can 
therefore lead to modulations of the sample structure factor which are significant hut 
‘invisible’. However, the Si-0 bond length in silica is well defined, giving a sharp 
peak at 1.8 8. in gsio(r). If the container subtraction is modified slightly this peak 
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Figure 7. (a) Example of a s t ~ c t u r e  [actor containing signi6cant Vtematic emrS (these 
are not obviously visible) and (a) the wmponding  radial distribution function. The 
large peak in g(r)  at % 0.6 A-' is unphysical and due to the erron. 

is usually apparent in the sample g(r), and the amount of subtraction can then be 
modified to minimize the silica contribution. g ( v ) s  obtained by direct transformation 
of structure factors taken from the literature should be examined for such a feature 
if the experiment used a silica container. 
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